Research Areas
The determination of biomarkers of exposure, measurement of multiroute exposures to volatile organic compounds and disinfection by-products in drinking water, exposure to children, the role of air pollution in exacerbation of asthma, exposures within aircraft and other modes of transportation, the sources of pollutants to indoor air and their contribution to personal exposure, and how exposures alter the lung microbiome.
Research Highlights
Scholarly Activities
Recent Publications
Research Areas
Dr. Welsh’s laboratory specializes in the development and application of computational tools for pharmaceutical drug discovery, predictive toxicology, and multi-dimensional pattern recognition. His laboratory’s interests extend to the molecular design and modeling of synthetic polymers, protein-material interactions, and protein-ligand interactions. In recent years, his laboratory has participated in the discovery of potential drug candidates for the treatment cancer, severe and chronic pain, and infectious diseases.
Research Highlights
Implemented the Shape Signatures tool for applications relevant to computational toxicology; major accomplishments achieved include:
Employed molecular modeling approaches to delineate and visualize how human ADA3 regulates the transcriptional activity of RAR(alpha) through direct interaction between LxxLL motifs and the receptor coactivator pocket.
Developed shape-based prioritization and classification approaches to predict human pregnane x receptor activators.
Identified and characterized a binding site for small-molecule PXR antagonists that interact on the outer surface of PXR at the AF-2 domain; major accomplishments achieved include:
Using microarray techniques to characterize gene expression profiles predictive of monomethylarsonous acid (MMA(III)) exposure and mode of action of carcinogenesis, we observed increases in transcript abundance of Fosl1, Myc, and Rac1 oncogenes in mouse skin. The results support previous findings of the inducibility of these oncogenes in response to arsenic and support the relevance of these genomic changes in skin tumor induction in the K6/ODC mouse model.
Scholarly Activities
Recent Publication
After completing his Ph.D. in chemistry at the University of Chicago, Dr. Weschler did postdoctoral studies with Prof. Fred Basolo at Northwestern University. In 1975 he joined Bell Laboratories as a research scientist in the Physical Chemistry Division. He conducted research at Bell Labs and its successor institutions until 2001 being named a Distinguished Member of Technical Staff (1986). In 2001 he retired from Bellcore/Telcordia and accepted positions at the Environmental & Occupational Health Science Institute and the International Centre for Indoor Environment and Energy, Technical University of Denmark. He has continued in those positions through the present. In 2010 he joined the faculty of the Building Science department at Tsinghua University (Beijing) as an ongoing Visiting Professor. He is also an Adjunct Professor in the Rutgers School of Public Health. He was a Member of the Committee on Air Quality in Passenger Cabins in Commercial Aircraft, National Academy of Sciences, 2000-2001; Advisor on Strategies to Protect the Health of Deployed US Forces, National Academy of Sciences, 1998-2000; Member of the Committee to Review the Structure and Performance of the Health Effects Institute, National Academy of Sciences, 1991-1993; and Member of the Committee on Advances in Assessing Human Exposure to Airborne Pollutants, National Academy of Sciences, 1987-1990. From 1999-2005 he served on the US EPA’s Science Advisory Board. He was elected to the International Academy of Indoor Air Sciences in 1999 and received the Pettenkofer Award, its highest honor, in 2014. He has been conferred the 2017 Haagen-Smit Prize from Atmospheric Environment; “Distinguished Visiting Professor” at Tsinghua University (2018); an “Honorary Doctorate” from the Technical University of Denmark (2018); and elected a Fellow of the American Association for the Advancement of Science (AAAS, 2020). He has an h-index of 78 with over 19,800 citations (Web of Science) and 88 with over 27,800 citations (Google Scholar).
Chemical reactions among indoor pollutants; their products, including free radicals and secondary organic aerosols. Gas/particle and gas/surface partitioning in indoor environments. Factors that influence the concentrations, transport and surface accumulations of indoor pollutants. Indoor pollutant exposures; their contributions to total pollutant exposures and consequent health effects. Uptake of organic pollutants via dermal absorption
Research Highlights
Scholarly Activities
Publications
Click here for a full list of Dr. Weschler’s Publications
Copyright © 2021, Rutgers, The State University of New Jersey