Climate-driven wildfire events are rapidly transferring harmful particulate matter containing toxic chemicals over long distances, compromising air quality in the New Jersey and New York City areas, according to Rutgers Health research.
Published in Environmental Science & Technology and to be featured on the cover of the journal’s next issue, the study assessed the physical and chemical characteristics of wildfire-related particulate matter and was the first to report this characterization from a climate-driven wildfire event in the densely populated Northeast region.
“Particulate matter is a leading environmental factor in the global burden of disease, with climate-driven wildfires being a major source,” said lead author Jose Guillermo “Memo” Cedeño Laurent, assistant professor at the Rutgers School of Public Health and director of the Rutgers Climate Adaptive and Restorative Environments Lab. “In the U.S., climate change-driven wildfires are reversing decade-long improvements in ambient air quality.”
The issue is pressing as there is an increasing body of evidence suggesting wildfire pollution is associated with worsened health impacts compared to non-wildfire pollution. Emerging evidence includes recent epidemiological studies linking the wildfire event to respiratory and cardiovascular emergency visits in New York City, although little is known about the mechanisms behind those impacts.
Using advanced physicochemical analysis of the particulate matter, researchers discovered large amounts of high molecular weight polycyclic aromatic hydrocarbons (PAHs), which are cancer-causing organic compounds, at the peak of the incident on June 7.
“We found very large concentrations of ultrafine and fine particulate matter during the peak of this wildfire, surpassing almost 10 times the national air quality standards and any previous record in more than five decades of air quality monitoring in the U.S. Northeast,” said Cedeño Laurent.
Senior author Philip Demokritou, Henry Rutgers Chair and professor in nanoscience and environmental engineering at the Rutgers School of Public Health and director of the Nanoscience and Advanced Materials Center (NAMC), said, “Such small particles have the ability to penetrate deep in the lung and can cause adverse health effects, as recently reported in the New York City area by epidemiological studies.”
(Source: Rutgers Today – August 9, 2024)
Copyright © 2024, Rutgers, The State University of New Jersey