< Charles J Weschler Ph.D. EOHSI Directory | EOHSI

A B C D E F G H J K L M N O P R S T U W X Y Z

Charles J Weschler Ph.D.

Adjunct Professor Rutgers UniversityEOHSI – Exposure Science and Epidemiology
Work 170 Frelinghuysen Road Room 338 Piscataway NJ 08854 Work Phone: 848-445-2073
Photo of Charles J Weschler Ph.D.

Biographical Info

After completing his Ph.D. at University of Chicago, Dr. Weschler did postdoctoral studies with Prof. Fred Basolo at Northwestern University. In 1975 he joined Bell Laboratories as a research scientist in the Physical Chemistry Division. He conducted research at Bell Labs and its successor institutions until 2001 being named a Distinguished Member of Technical Staff (1986). In 2001 he retired from Bellcore/Telcordia and accepted positions at the Environmental & Occupational Health Science Institute and the International Centre for Indoor Environment and Energy, Technical University of Denmark. He has continued in those positions through the present. In 2010 he joined the faculty of the Building Science department at Tsinghua University (Beijing) as an ongoing Visiting Professor. He is also an Adjunct Professor in the Rutgers School of Public Health. He was a Member of the Committee on Air Quality in Passenger Cabins in Commercial Aircraft, National Academy of Sciences, 2000-2001; Advisor on Strategies to Protect the Health of Deployed US Forces, National Academy of Sciences, 1998-2000; Member of the Committee to Review the Structure and Performance of the Health Effects Institute, National Academy of Sciences, 1991-1993; and Member of the Committee on Advances in Assessing Human Exposure to Airborne Pollutants, National Academy of Sciences, 1987-1990. From 1999-2005 he served on the US EPA’s Science Advisory Board. He was elected to the International Academy of Indoor Air Sciences in 1999 and received the Pettenkofer Award, its highest honor, in 2014. He has been conferred the 2017 Haagen-Smit Prize from Atmospheric Environment; “Distinguished Visiting Professor” at Tsinghua University (2018); “Doctor Technices Honoris Causa” from the Technical University of Denmark (2018); and was recently (2020) elected a Fellow of the American Association for the Advancement of Science (AAAS). He has an h-index of 65 (Web of Science) and 75 (Google Scholar).

Chemical reactions among indoor pollutants; their products, including free radicals and secondary organic aerosols. Gas/particle and gas/surface partitioning in indoor environments. Factors that influence the concentrations, transport and surface accumulations of indoor pollutants. Indoor pollutant exposures; their contributions to total pollutant exposures and consequent health effects. Uptake of organic pollutants via dermal absorption

Research Highlights

  • Identified phthalates, organophosphates and cyclic siloxanes in indoor airborne particles (early ’80s).
  • Identified certain reactions catalyzed by transition metals as sources of free radicals within aqueous atmospheric aerosols (mid ’80’s).
  • Early assessment of indoor ozone exposures showing that they are often comparable to or larger than outdoor exposures (late ’80s).
  • Demonstrated substantive impact of ozone-initiated chemistry on indoor environments (early ’90s).
  • Outlined circumstantial evidence for meaningful levels of nitrate radicals indoors (early ’90s).
  • Predicted, and later confirmed, significant indoor levels of hydroxyl radicals from ozone/terpene reactions (mid 90s).
  • Called out broad influence of indoor chemistry and suggesting areas for future research; follow-up reviews at 7-yr intervals (mid ’90s).
  • Identified ozone/terpene chemistry as a strong indoor source of secondary organic aerosols (late ’90s).
  • Recognized the potential adverse health effects of ozone reaction products indoors (mid ’00s).
  • Critically reviewed indoor pollutants, primary & secondary, resulting from the use of cleaning agents and air fresheners indoors (mid ’00s).
  • Discovered the importance of ozone/skin oil chemistry as a sink for ozone and a source of oxygenated organics in occupied environments (late ’00s).
  • Cataloged the changing nature of the chemicals found indoors over the past 50 years (late ’00s).
  • Presented a physical-chemistry based framework for better understanding of SVOC dynamics in indoor environments (late ’00s).
  • Demonstrated that city-to-city differences in indoor exposures to outdoor ozone partially explain city-to-city variability in short-term mortality coefficients associated with ozone; similarly for PM10 (early ’10s).
  • Identified dermal absorption, directly from air, as a significant exposure pathway for certain indoor organic pollutants (early ’10s).

Scholarly Activities

  • Visiting Professor (ongoing), International Centre for Indoor Environment and Energy, Technical University of Denmark, 2001 – present.
  • Visiting Professor & Distinguished Visiting Professor, Building Sciences, Tsinghua University (Beijing), 2010 – present.
  • Editorial advisory boards: Indoor Air: 2007-present; Atmospheric Environment: 2003-2014
  • Indoor Air Associate Editor, 2001-2007
  • Co-PI in the Air Transportation Center of Excellence for Airliner Cabin Environment Research (ACER) sponsored by U.S. FAA, 2004 – 2014.
  • Served on four committees for the National Academy of Sciences, the U.S. EPA’s Science Advisory Board and NIOSH’s NORA committee. Former Chair of the Science Advisory Board for an NSF Center at University of Texas, Austin.
  • Guest Professor: University of Innsbruck, Austria (2004, 2006 — 2009); University of Kuopio, Finland (2004); University of Umea, Sweden (2003)

Publications

Click here for a full list of Dr. Weschler’s Publications

  1. Liu, Y, Misztal, PK, Arata, C, Weschler, CJ, Nazaroff, WW, Goldstein, AH. Observing ozone chemistry in an occupied residence. Proc Natl Acad Sci U S A. 2021;118 (6):. doi: 10.1073/pnas.2018140118. PubMed PMID:33526680 PubMed Central PMC8017968
  2. Eichler, CMA, Hubal, EAC, Xu, Y, Cao, J, Bi, C, Weschler, CJ, Salthammer, T, Morrison, GC, Koivisto, AJ, Zhang, Y et al.. Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environ Sci Technol. 2021;55 (1):25-43. doi: 10.1021/acs.est.0c02329. PubMed PMID:33319994 PubMed Central PMC7877794
  3. Wang, N, Zannoni, N, Ernle, L, Bekö, G, Wargocki, P, Li, M, Weschler, CJ, Williams, J. Total OH Reactivity of Emissions from Humans: In Situ Measurement and Budget Analysis. Environ Sci Technol. 2021;55 (1):149-159. doi: 10.1021/acs.est.0c04206. PubMed PMID:33295177 PubMed Central PMC7788569
  4. Goldstein, AH, Nazaroff, WW, Weschler, CJ, Williams, J. How Do Indoor Environments Affect Air Pollution Exposure?. Environ Sci Technol. 2021;55 (1):100-108. doi: 10.1021/acs.est.0c05727. PubMed PMID:33284612
  5. Eftekhari, A, Frederiksen, H, Andersson, AM, Weschler, CJ, Morrison, G. Predicting Transdermal Uptake of Phthalates and a Paraben from Cosmetic Cream Using the Measured Fugacity. Environ Sci Technol. 2020;54 (12):7471-7484. doi: 10.1021/acs.est.0c01503. PubMed PMID:32432857
  6. Bekö, G, Wargocki, P, Wang, N, Li, M, Weschler, CJ, Morrison, G, Langer, S, Ernle, L, Licina, D, Yang, S et al.. The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: Overview of experimental methodology and preliminary results. Indoor Air. 2020;30 (6):1213-1228. doi: 10.1111/ina.12687. PubMed PMID:32424858
  7. Li, M, Weschler, CJ, Bekö, G, Wargocki, P, Lucic, G, Williams, J. Human Ammonia Emission Rates under Various Indoor Environmental Conditions. Environ Sci Technol. 2020;54 (9):5419-5428. doi: 10.1021/acs.est.0c00094. PubMed PMID:32233434
  8. Nazaroff, WW, Weschler, CJ. Indoor acids and bases. Indoor Air. 2020;30 (4):559-644. doi: 10.1111/ina.12670. PubMed PMID:32233033
  9. Yao, M, Weschler, CJ, Zhao, B, Zhang, L, Ma, R. Breathing-rate adjusted population exposure to ozone and its oxidation products in 333 cities in China. Environ Int. 2020;138 :105617. doi: 10.1016/j.envint.2020.105617. PubMed PMID:32155513
  10. Salvador, CM, Bekö, G, Weschler, CJ, Morrison, G, Le Breton, M, Hallquist, M, Ekberg, L, Langer, S. Indoor ozone/human chemistry and ventilation strategies. Indoor Air. 2019;29 (6):913-925. doi: 10.1111/ina.12594. PubMed PMID:31420890 PubMed Central PMC6856811
Search PubMed

 

Categories: Faculty, Exposure Science and Epidemiology
Updated 3 weeks ago.