Micro- and Nanoplastic Exposure During Pregnancy

Phoebe Stapleton, PhD, ATC Department of Pharmacology and Toxicology Environmental and Occupational Health Sciences Institute Rutgers University

October 18, 2024

Air Pollution and Particulate Matter (PM) - Epidemiological Studies

- Epidemiologic evidence of cardiovascular (not pulmonary) effects after air pollution exposure.¹
- Increased incidence of heart attacks within 24 hours of exposure.²
- Increased risk of fetal growth restriction (FGR) from air pollution exposure during pregnancy.^{3,4}
- Overall, exposure to air pollution has adverse effects on cardiopulmonary health.^{5,6}

San Francisco, Camp Fire wildfires, 2018
^{1.} Dockery, 2001; ^{2.} Peters, 2001;
^{3.} Nobles, 2019; ^{4.} Liu, 2007
^{5.} Pope, 2015; ^{6.} Van Eeden, 2002

Inhalation of Fine vs. Ultrafine (Nanosized) Particles

- Smaller particles (100 nm) have a greater retention in the lung than larger (<2.5 $\mu m)$ particles.¹
- Greater inflammation within the lung, and blood plasma, following exposure to ultrafine (nanosized) particles²
- Evidence of neural activation³
- Ultrafine particle translocation from the lungs to systemic organs⁴
- Overall, ultrafine (nano) particles have a greater toxicity than fine (sub micron) particles of the same chemical composition.

Animation – Dr. Cody Nichols ¹Husain, 2013 ²Baisch, 2014 ³Knuckles, 2012; Stapleton, 2015 ⁴Elder, 2006; Stapleton, 2012

Maternal-Fetal Model

- Complex and widely understudied model
 - Rapid and precise tissue development
 - Hormonal variation
 - Physiological disparities (normal)
 - Increased Blood Volume
 - Increased Heart Size
 - Increased Tidal Volume
 - Fetal growth restriction increases risk of
 - *fetal/offspring morbidity/mortality*
 - cardiovascular, metabolic, neurological disease

<u>Research Question</u>: How something a mother inhales during pregnancy affects her health, fetal health, and surviving offspring.

Laboratory Model and Experimental Design

Knowns

(Based on our work in maternal-fetal nanotoxicology)

Maternal

- Uterine blood vessels do not dilate well after nanoparticle exposure. (Stapleton, 2013; Stapleton, 2018; Fournier, 2019; Cary, 2024)
- Culminate in an inability to meet fetal blood flow demands. (Stapleton, 2013; D'Errico, 2019b)
- Develop an FGR phenotype. (Stapleton, 2013; Fournier, 2019)
- May impair conception and postpartum coronary recovery. (Stapleton, 2018; Cary, 2024; Adams, in preparation)

Maternal and fetal outcomes associated with particle translocation or secondary effects due to exposure?

Does the placenta act as a biological barrier or can nano-sized particles translocate across the placenta?

Fetal/Offspring

- Development of FGR
 phenotype (Stapleton, 2013;
 Fournier, 2019)
- Impaired <u>fetal</u> cardiovascular health
 - Vascular dysfunction (Stapleton, 2013)
 - Cardiac/coronary dysfunction (Hathaway, 2017)
 - Reduced coronary bioenergetics (Hathaway, 2017)
 - Epigenetic alterations (Stapleton, 2018)
- Impaired <u>adult</u> cardiovascular health (Stapleton, 2015; Fournier, 2021)

Placenta Does Not Act as a Barrier to Nanoparticles

D'Errico, 2019; Fournier, 2020

We are surrounded by plastics.

Passenger/

Light Truck

Tires

STEEL

12%

NATURAL RUBBER

19%

ANTIOXIDANTS, ANTIOZONANTS,

CURING SYSTEMS

14%

TEXTILE

4%

FILLERS

26%

24%

A LIFETIME OF PLASTIC

The first plastics made from fossil fuels are just over a century old. They came into widespread use after World War II and are found today in everything from cars to medical devices to food packaging. Their useful lifetime varies. Once disposed of, they break down into smaller fragments that linger for centuries.

400

2008 recession

300

200

Growth in Asia As the economies in Asia grow, so does demand for consumer products---and plastics. Half the world's plastics are made there, 29 percent in China.

Global plastic production by industry in millions of tons

Legacy of World War II Shortages of natural materials during the war led to a search for synthetic alternatives-and to an exponential surge in plastic production that continues today.

> 100 1973 oil crisis

Total 448 million tons produced in 2015

Other 52 million includes health care and agriculture The average time plastics are used before they're discarded.

Building and construction 72 million 35 years

Industrial machinery 3 million 20 years

Transportation 30 million 13 years

Electrical 19 million 8 years

Textiles 65 million 5 years

Consumer products 46 million 3 years

Packaging 161 million Less than six months

The largest market for plastics today is for packaging materials. That trash now accounts for nearly half of all plastic waste generated globally; most of it never gets recycled or incinerated.

Plastics are made through the chemical-linkage of monomers to polymers.

Breakdown of plastics ranges from 10 – 1000 years often through thermal, UV, and mechanical degradation.

The average estimate for plastic bag degradation is 20 years, while a plastic bottle to breakdown is 450 years.

This concept of decomposition is unclear.

- Not always referring to chemical degradation.
- May refer to particle size.

Just because something is invisible, doesn't mean that it isn't there...

Micro- and Nanosized Plastics

<u>Microplastics</u> are not a specific kind of plastic, but a plastic fragment that is less than **5 mm** in length.

(Sesame Seed) (Toothbrush Bristles)

Nanoplastics are defined as less than 1000 nm in environmental studies and 100 nm in laboratory studies¹.

(Surface Area)

NOAA, Ocean Facts, March 30, 2020 Image: Washington Post ¹Stapleton, 2019, AIMS Environmental Science

Microplastics In the Environment

State	Size (km²)	deposition rate (plastics m ⁻² day ⁻¹)	of plastic per year (visual counts)	of plastic per year (FTIR proportions
AZ	4926	112 ± 6	10.7–11.9	11.0–21.3
WY	7252	68 ± 6	9.3–11.1	10.9–22.3
ID	2893	139 ± 10	7.7–8.8	11.5–19.3
CO	1047	435 ± 8	9.4–9.8	4.2–9.0
CA	3200	54 ± 2	3.4–3.7	3.7–9.8
UT	1849	120 ± 6	4.3–4.8	1.6–2.8
UT	1366	48 ± 7	1.2–1.5	3.0-6.1
CO	311	148 ± 5	0.9–1.0	0.4–1.3
CO	300	140 ± 9	0.8–0.9	0.4–0.9
NV	312	107 ± 5	0.65–0.72	0.4–1.3
UT	145	80 ± 6	0.22-0.26	0.4–0.8
USA	496,350	132 ± 6	1012– 2419	1185– 3773
	State AZ WY ID CO CA UT UT CO NV UT State	StateSize (km²)AZ4926WY7252ID2893CO1047CA3200UT1849CO311CO300NV312UT145	StateSize (km²)deposition rate (plastics m² day⁻1)AZ4926112 ± 6WY725268 ± 6ID2893139 ± 10CO1047435 ± 8CA320054 ± 2UT1849120 ± 6UT136648 ± 7CO311148 ± 5CO300140 ± 9NV312107 ± 5UT14580 ± 6	State Size (km²) deposition rate (plastics m²² clusual counts) of plastic per year (visual counts) AZ 4926 112 ± 6 10.7–11.9 WY 7252 68 ± 6 9.3–11.1 ID 2893 139 ± 10 7.7–8.8 CO 1047 435 ± 8 9.4–9.8 CA 3200 54 ± 2 3.4–3.7 UT 1849 120 ± 6 4.3–4.8 UT 1366 48 ± 7 1.2–1.5 CO 311 148 ± 5 0.9–1.0 CO 300 140 ± 9 0.8–0.9 NV 312 107 ± 5 0.65–0.72 UT 145 80 ± 6 0.22–0.26

Figure 1, Knuckles, 2013; Table 3, Brahney, 2020 (4µm-3mm); Mason, 2013

Microplastic Exposures

INGESTION:

Bottled Water (Kosuth, 2018) Beer (Kosuth, 2018) Wine (Prata, 2020) Tea (bags; Hernandez, 2019) Rice (Dessi, 2021) Sugar and Honey (Liebezeit, 2013) Feces (Schwabl, 2019)

INHALATION: Indoor Air (Kaprzak, 2022) Outdoor Air [Rural and Urban] (Perera, 2022) Human Lung Samples (Jenner, 2022)

Especially concerning as humans spend 70-90% of the time indoors (Alzona, 1979)

Microplastics in Human Tissues

- Human Lung (patient and cadaver; Jenner, 2022; Amato-Lourenco, 2021)
- Carotid Artery plaque (Marfella, 2024)
- Olfactory Bulb, a group nerve cells at the bottom side of the brain (Amato-Lourenco, 2024)
- Heart (Yang, 2023)
- Liver (Horvatits, 2022)
- Kidney (Massardo, 2024)
- Urine (Massardo, 2024)
- Penile tissue (Codrington, 2024)
- Testes (Hu, 2024)
- Breastmilk (Ragusa, 2022)
- *Placenta (Ragusa, 2021; Braun, 2021; Garcia, 2024)
- *Meconium (Braun, 2021)

Made with BioRender

Nanoplastics in Bottled Water

RESEARCH ARTICLE CHEMISTRY ENVIRONMENTAL SCIENCES OPEN ACCESS

Rapid single-particle chemical imaging of nanoplastics by SRS microscopy

Naixin Qian^a, Xin Gao^a, Xiaoqi Lang^a, Huiping Deng^b, Teodora Maria Bratu^b, Qixuan Chen^c, Phoebe Stapleton^d, Beizhan Yan^{b,1}, and Wei Min^{a,e,1}

240,000 – 400,000 nanoplastic particles per **Liter** of bottled water

Laboratory Model and Experimental Design

Nanoplastic Identification - Laboratory

- Hyperspectral Dark-Field Microscopy
 - Light Refraction
- Challenge difficult for mixtures, not ideal for real world evaluations

900

1000

700

800

Lung Tissue Mean Spectrum

Stapleton, 2012

Material:

20 nm FL labeled polystyrene bead (*IT*) 2.64 x 10¹⁴ PS particles

Our experimental dosage of 2.64 x 10¹⁴ nanoplastic particles is lower than the calculated environmental exposure dose.

Fournier, 2020 Penncentury.com

Material:

20 nm FL labeled polystyrene bead (*IT*) 2.64 x 10¹⁴ PS particles

Our experimental dosage of 2.64 x 10¹⁴ nanoplastic particles is lower than the calculated environmental exposure dose.

Fournier, 2020 Penncentury.com

Nanopolystyrene Intratracheal Instillation

Material:

20 nm FL labeled polystyrene bead (*IT*) 2.64 x 10¹⁴ PS particles

Nanopolystyrene Intratracheal Instillation

Material:

20 nm FL labeled polystyrene bead (IT) 2.64 x 10¹⁴ PS particles

Nanopolystyrene Intratracheal Instillation

Material: 20 nm FL labeled polystyrene bead (*IT*) 2.64 x 10¹⁴ PS particles Nanopolystyrene Intratracheal Instillation

Fournier, 2020

Material: 20 nm FL labeled polystyrene bead (*IT*) 2.64 x 10¹⁴ PS particles Nanopolystyrene Intratracheal Instillation

Fournier, 2020

25 nm Carboxylated polystyrene bead (G) 250 $\mu g/mL,\,10~mL/kg$

Cary, 2023 Pan-Montojo, 2010

Nanopolystyrene Gavage

MNP Maternal Transfer to Offspring

Maternal MNP Inhalation Polyamide-12

Offspring **2 Weeks of Age**

Moreno, 2024

MNP Persistence into Adulthood

Polyamide-12 Offspring at 3 Months of Age

in preparation

Ongoing Projects:

- Understanding Dosimetry Between Exposure Dose and Internal Dose/Bioaccumulation
- Mechanisms of MNP Translocation
- Systemic Toxicities of MNP Exposure and Deposition
- Specific Toxicities of MNP Based on Material Properties

Stapleton Laboratory

Sara Fournier, PhD Tanisha Brunson-Malone Gina Moreno, PhD Justin Kidd, PhD Jeanine D'Errico, PhD Chelsea Cary, Graduate Student Talia Seymore, Graduate Student Samantha Adams, Graduate Student Taina Moore, Graduate Student Destiny McWilliams, SURF Student Nora Abdelfattah, SURF Student

Cytoviva, Inc

Rutgers Molecular Imaging Facility Ed Yurkow, PhD Derek Adler, MS

Rutgers Research Pathology Services Mike Goedken, DMV, PhD Marianne Polunas, PhD

National Institute of Environmental Health Sciences Your Environment. Your Health.

NIH-R01-ES031285; R00-ES024783; T32-ES007148; P30-ES005022; R25-ES020721 Herbert W. Hoover Foundation; Grover Foundation